Data mining of Bayesian networks using cooperative coevolution
نویسندگان
چکیده
This paper describes a novel data mining algorithm that employs cooperative coevolution and a hybrid approach to discover Bayesian networks from data. A Bayesian network is a graphical knowledge representation tool. However, learning Bayesian networks from data is a difficult problem. There are two different approaches to the network learning problem. The first one uses dependency analysis, while the second approach searches good network structures according to a metric. Unfortunately, the two approaches both have their own drawbacks. Thus, we propose a novel algorithm that combines the characteristics of these approaches to improve learning effectiveness and efficiency. The new learning algorithm consists of the Conditional Independence (CI) test and the search phases. In the CI test phase, dependency analysis is conducted to reduce the size of the search space. In the search phase, good Bayesian networks are generated by a cooperative coevolution genetic algorithm. We conduct a number of experiments and compare the new algorithm with our previous algorithm, Minimum Description Length and Evolutionary Programming (MDLEP), which uses evolutionary programming for network learning. The results illustrate that the new algorithm has better performance. We apply the algorithm to a large real-world data set and compare the performance of the discovered Bayesian networks with that of the backpropagation neural networks and the logistic regression models. This study illustrates that the algorithm is a promising alternative to other data mining algorithms.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملMemetic cooperative coevolution of Elman recurrent neural networks
Cooperative coevolution decomposes an optimisation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classificati...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 38 شماره
صفحات -
تاریخ انتشار 2004